home *** CD-ROM | disk | FTP | other *** search
/ BBS in a Box 12 / BBS in a box XII-1.iso / Files / Education / M / MathPad 2.15.sit / MathPad 2.15 / examples / interpolation < prev    next >
MacBinary  |  1993-10-06  |  1.1 KB  |  [TEXT/MPAD]

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text

This file was processed as: MacBinary (archive/macBinary).

You can browse this item here: interpolation

ConfidenceProgramDetectionMatch TypeSupport
10% dexvert MacBinary (archive/macBinary) fallback Supported
1% dexvert Text File (text/txt) fallback Supported
100% file MacBinary II, Wed Oct 6 16:12:00 1993, modified Wed Oct 6 16:12:00 1993, creator 'MPAD', type ASCII, 534 bytes "interpolation" , at 0x296 342 bytes resource default (weak)
99% file data default
74% TrID Macintosh plain text (MacBinary) default
25% TrID MacBinary 2 default (weak)
100% siegfried fmt/1762 MacBinary (II) default
100% lsar MacBinary default


id metadata
keyvalue
macFileType[TEXT]
macFileCreator[MPAD]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 0d 69 6e 74 65 72 70 | 6f 6c 61 74 69 6f 6e 00 |..interp|olation.|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 4d 50 41 | 44 00 00 00 00 00 00 00 |.TEXTMPA|D.......|
|00000050| 00 00 00 00 00 02 16 00 | 00 01 56 a8 d8 d7 10 a8 |........|..V.....|
|00000060| d8 d7 10 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 b8 7d 00 00 |........|.....}..|
|00000080| 2d 2d 20 53 6f 6c 76 65 | 20 66 6f 72 20 63 6f 65 |-- Solve| for coe|
|00000090| 66 66 69 63 69 65 6e 74 | 73 20 6f 66 20 61 20 70 |fficient|s of a p|
|000000a0| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 74 68 61 74 20 67 |olynomia|l that g|
|000000b0| 6f 65 73 20 74 68 72 6f | 75 67 68 20 6e 20 64 61 |oes thro|ugh n da|
|000000c0| 74 61 20 70 6f 69 6e 74 | 73 2e 0d 0d 64 61 74 61 |ta point|s...data|
|000000d0| 20 3d 20 72 65 61 64 28 | 78 79 64 61 74 61 29 0d | = read(|xydata).|
|000000e0| 70 6c 6f 74 20 64 61 74 | 61 5b 31 3a 6e 5d 0d 0d |plot dat|a[1:n]..|
|000000f0| 78 5b 69 5d 3d 64 61 74 | 61 5b 69 2c 31 5d 20 64 |x[i]=dat|a[i,1] d|
|00000100| 69 6d 5b 6e 5d 20 2d 2d | 20 73 65 70 61 72 61 74 |im[n] --| separat|
|00000110| 65 20 78 20 61 6e 64 20 | 79 0d 79 5b 69 5d 3d 64 |e x and |y.y[i]=d|
|00000120| 61 74 61 5b 69 2c 32 5d | 20 64 69 6d 5b 6e 5d 0d |ata[i,2]| dim[n].|
|00000130| 0d 66 28 78 29 5b 6a 5d | 20 3d 20 78 5e 28 6a 2d |.f(x)[j]| = x^(j-|
|00000140| 31 29 20 20 2d 2d 20 70 | 6f 6c 79 6e 6f 6d 69 61 |1) -- p|olynomia|
|00000150| 6c 0d 0d 2d 2d 20 63 6f | 6e 73 74 72 75 63 74 20 |l..-- co|nstruct |
|00000160| 6d 61 74 72 69 78 20 75 | 73 69 6e 67 20 78 20 64 |matrix u|sing x d|
|00000170| 61 74 61 20 70 6f 69 6e | 74 73 0d 41 5b 69 2c 6a |ata poin|ts.A[i,j|
|00000180| 5d 20 3d 20 66 28 78 5b | 69 5d 29 5b 6a 5d 20 64 |] = f(x[|i])[j] d|
|00000190| 69 6d 5b 6e 2c 6e 5d 0d | 0d 2d 2d 20 73 6f 6c 76 |im[n,n].|.-- solv|
|000001a0| 65 20 66 6f 72 20 63 6f | 65 66 66 73 20 74 68 61 |e for co|effs tha|
|000001b0| 74 20 67 69 76 65 20 79 | 20 70 6f 69 6e 74 73 0d |t give y| points.|
|000001c0| 63 3a 3d 73 6f 6c 76 65 | 28 41 2c 79 29 3a 0d 63 |c:=solve|(A,y):.c|
|000001d0| 3a 7b 30 2e 37 39 37 2c | 33 2e 38 36 33 2c 2d 30 |:{0.797,|3.863,-0|
|000001e0| 2e 37 31 35 2c 30 2e 30 | 35 37 2c 2d 30 2e 30 30 |.715,0.0|57,-0.00|
|000001f0| 32 2c 30 2e 30 30 30 7d | 0d 0d 6e 3d 36 0d 70 6c |2,0.000}|..n=6.pl|
|00000200| 6f 74 20 73 75 6d 28 28 | 63 2a 66 28 58 29 29 5b |ot sum((|c*f(X))[|
|00000210| 69 5d 2c 69 2c 31 2c 6e | 29 0d 0d 2d 2d 2d 2d 67 |i],i,1,n|)..----g|
|00000220| 65 6e 65 72 61 6c 20 65 | 71 75 61 74 69 6f 6e 20 |eneral e|quation |
|00000230| 73 6f 6c 76 65 72 0d 73 | 6f 6c 76 65 28 41 2c 42 |solver.s|olve(A,B|
|00000240| 29 5b 6a 5d 20 3d 20 64 | 65 74 28 63 72 61 6d 28 |)[j] = d|et(cram(|
|00000250| 41 2c 42 2c 6a 29 29 2f | 64 65 74 28 41 29 0d 63 |A,B,j))/|det(A).c|
|00000260| 72 61 6d 28 41 2c 42 2c | 6b 29 5b 69 2c 6a 5d 20 |ram(A,B,|k)[i,j] |
|00000270| 3d 20 41 5b 69 2c 6a 5d | 20 77 68 65 6e 20 6a ad |= A[i,j]| when j.|
|00000280| 6b 2c 20 42 5b 69 5d 20 | 64 69 6d 5b 63 6f 75 6e |k, B[i] |dim[coun|
|00000290| 74 28 42 29 5d 0d 00 00 | 00 00 00 00 00 00 00 00 |t(B)]...|........|
|000002a0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000002b0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000002c0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000002d0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000002e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000002f0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000300| 00 00 01 00 00 00 01 24 | 00 00 00 24 00 00 00 32 |.......$|...$...2|
|00000310| 58 d7 74 01 ff e2 51 2f | 80 01 00 9e f3 01 fe 0c |X.t...Q/|........|
|00000320| c0 01 ff e6 58 b7 54 01 | b0 a8 48 80 01 00 88 7d |....X.T.|..H....}|
|00000330| 0d 69 6e 74 65 72 70 6f | 6c 61 74 69 6f 6e 02 00 |.interpo|lation..|
|00000340| 00 00 50 61 72 74 53 49 | 54 78 00 00 00 00 00 00 |..PartSI|Tx......|
|00000350| 00 00 50 61 72 74 53 49 | 54 78 00 00 00 00 00 00 |..PartSI|Tx......|
|00000360| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000370| 00 00 a9 7e bd ee 00 00 | 00 00 00 00 01 56 60 26 |...~....|.....V`&|
|00000380| 2d 6e 54 43 5a 01 ff de | 59 43 46 01 01 84 26 01 |-nTCZ...|YCF...&.|
|00000390| b0 45 6d a5 20 04 01 0c | 86 20 03 01 66 1c da 5f |.Em. ...|. ..f.._|
|000003a0| 3c 5f 52 5a 5f 50 3a 01 | 60 30 da 5b 3c 5b 52 5a |<_RZ_P:.|`0.[<[RZ|
|000003b0| 5b 50 01 24 e2 7d 56 8b | c1 37 01 01 08 26 68 71 |[P.$.}V.|.7...&hq|
|000003c0| 49 3d 01 ff ea 3e 8e 01 | fe ae da 5f 15 67 34 4a |I=...>..|..._.g4J|
|000003d0| 2e ff f7 67 08 20 3c 02 | 6d 6f 76 67 d3 d5 20 03 |...g. <.|movg.. .|
|000003e0| 31 29 5f 3f 2a 4c 01 fa | ec 68 82 da 5b 20 05 40 |1)_?*L..|.h..[ .@|
|000003f0| 01 67 67 d3 d5 40 01 61 | 67 31 29 5b 3f 2a 4c 01 |.gg..@.a|g1)[?*L.|
|00000400| 00 00 00 20 00 00 00 03 | 00 02 3f f9 8e fa 35 12 |... ....|..?...5.|
|00000410| 94 e9 c8 ae 01 0e 01 2d | 00 04 00 28 01 06 01 2c |.......-|...(...,|
|00000420| 00 f8 00 28 00 00 01 00 | 00 00 01 24 00 00 00 24 |...(....|...$...$|
|00000430| 00 00 00 32 00 14 f8 1c | 07 b8 00 00 00 1c 00 32 |...2....|.......2|
|00000440| 00 00 50 52 65 66 00 00 | 00 0a 00 80 ff ff 00 00 |..PRef..|........|
|00000450| 00 00 00 15 60 18 00 00 | 00 00 00 00 00 00 00 00 |....`...|........|
|00000460| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000470| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
+--------+-------------------------+-------------------------+--------+--------+